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Finite-volume discretization schemes for viscous fluxes on general grids are compared using node-centered and

cell-centered approaches. The grids range from regular grids to highly irregular grids, including random

perturbations of the grid nodes. Accuracy and complexity are studied for four nominally second-order accurate

schemes: a node-centered scheme and three cell-centered schemes (a node-averaging scheme and two schemes using

least-squares face-gradient reconstruction). The two least-squares schemes use either a nearest-neighbor or an

adaptive-compact stencil at a face. The node-centered and least-squares schemes have similarly low levels of

complexity. The node-averaging scheme has the highest complexity and can fail to converge to the exact solution

when clipping of the node-averaged values is used. On highly anisotropic grids, typical of those encountered in grid

adaptation, the least-squares schemes, the node-averaging scheme without clipping, and the node-centered scheme

demonstrate similar second-order accuracies per degree of freedom.Onanisotropic grids over a curvedbody, typical

of turbulent flow simulations, the node-centered scheme is second-order accurate. The node-averaging scheme may

degenerate on mixed-element grids. The least-squares schemes have to be amended to maintain second-order

accuracy by either introducing a local approximatemapping ormodifying the stencil to reflect the direction of strong

coupling. Overall, the accuracies of the node-centered and the best cell-centered schemes are comparable at an

equivalent number of degrees of freedom on isotropic and curved anisotropic grids. On stretched, randomly

perturbed grids in a rectangular geometry, both gradient and discretization errors for all schemes are orders of

magnitude higher than corresponding errors on regular grids.

Nomenclature

A = aspect ratio
Ed = discretization error
Et = truncation error
Erel = relative gradient error
e�� = unit vector in ���� direction
e? = vector normal to the vector e
f = forcing function
fh = discrete approximation to the forcing function
he = effective mesh size, L1 norm of

����
V
p

hr, h� = radial and circumferential mesh spacing, respectively

hx, hy = Cartesian mesh sizes in the x and y directions,
respectively

ĥy = minimal mesh spacing on stretched grids
fiTg = set of nodes of cell T
fkjg = set of nodes connected to node j by edges
N = total number of mesh points
Nx, Ny = number of grid points in the x and y directions,

respectively
n = outward-directed area vector
n̂ = outward unit normal vector
�ni = inward-directed area vector of a face opposite

to node i
R = radius of curvature
r = coordinate vector
r, � = polar coordinates
s = distance to the designated boundary
T = triangle or tetrahedron
fTjg = set of triangles/tetrahedra around node j
U = exact solution of Poisson’s equation
Uh = discrete solution of Poisson’s equation
rU = gradient of solution U evaluated by Green–Gauss

formuladrU = gradient of solution U evaluated by least-squares
method

V = measure of a control volume
x, y = Cartesian coordinates
� = stretching factor
� = curvature-induced grid deformation parameter
� = Laplace operator
@eU = edge derivative of solution U
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@fU = face derivative of solution U
�L, �R = angles between edges in two dimensions
� = edge median
�, � = local coordinates
� = random number � 2 ��1; 1�
�, @� = control volume and control-volume boundary,

respectively
j � j = absolute value of a scalar or a vector
k � k = norm of interest (e.g., L1 or L1)
r = gradient operator
rr = reconstructed gradient

Subscript

p = grid with perturbed nodes

Superscripts

L, R = triangles to the left and right of an edge

I. Introduction

B OTH node-centered (NC) and cell-centered (CC) finite-volume
discretizations (FVDs) are widely used for complex three-

dimensional (3-D) turbulent simulations in aerospace applications.
The relative advantages of the two approaches have been extensively
studied in the search for methods that are accurate, efficient, and
robust over the broadest possible range of grid and solution
parameters. The topic was discussed in a panel session at the 2007
AIAA Computational Fluid Dynamics (CFD) Conference, but a
consensus did not emerge. One of the difficulties in assessing the two
approaches is that comparative calculations were not completed in a
controlled environment (i.e., computations were made with different
codes and different degrees of freedom), and the exact solutions were
not known.

In this paper, a subset of the discretization elements needed in
turbulent simulations, namely that of the viscous discretization, is
compared in a controlled environment. In particular, Poisson’s
equation is considered as a model of viscous discretization. The
method of manufactured solution is used, so that the exact solution is
known and smooth on the scale of the grids. Theoretical and
computational studies of accuracy and complexity are conducted for
a range of grids.

The two-dimensional (2-D) grids considered range from
structured (regular) grids to irregular grids composed of arbitrary
mixtures of triangles and quadrilaterals. Highly irregular grids are
deliberately constructed through random perturbations of structured
grids to bring out the worst possible behavior of the solution. Two
classes of tests are considered. The first class of tests involves both
isotropic and highly anisotropic grids, typical of those encountered
in grid adaptation. The second class of tests involves grids varying
strongly anisotropically over a curved body, typical of those
encountered in high-Reynolds-number turbulent flow simulations.

Four nominally second-order accurate schemes, a NC scheme and
three CC schemes, are compared for computational complexity and
gradient and discretization errors at equivalent degrees of freedom.
The CC schemes include a node-averaging (CC–NA) scheme and
two least-squares face-gradient reconstruction schemes differing in
their stencils: a nearest-neighbor (CC–NN) stencil and an adaptive-
compact stencil (CC–CS). The effect of clipping is studied for the
CC–NA scheme. The current version of the CC–CS scheme is
derived for triangular grids, but it can be formally applied to
quadrilateral and mixed-element grids, for which it is similar to the
CC–NN scheme. It is expected that an effective mixed-element
version of the CC–CS scheme can be derived, but it is not currently
available. For the second class of tests, an approximately mapped
(AM) least-squares approach is introduced to accommodate curved
high-aspect-ratio grids. The mapping employs the distance function
commonly available in practical codes and can be used with any
scheme.

II. Grid Terminology

This paper studies FVD schemes for viscous fluxes on grids that
are loosely defined as irregular. There is no commonly accepted
definition for irregular grids and so, for clarity, this section specifies
the grid terminology used in the paper.

A grid is classified as periodic if it has 1) a periodic node
connectivity pattern (i.e., the number of edges per node changes
periodically) and 2) a periodic cell distribution (i.e., the grid is
composed of periodically repeated combinations of cells). Thus,
periodic grids can be analyzed by Fourier analysis. Grids that are
derived from periodic grids by a smooth mapping are called regular
grids. Regular grids include, but are not limited to, grids derived from
Cartesian ones, triangular grids obtained by diagonal splitting with a
periodic pattern, smoothly stretched grids, skewed grids, smooth
curvilinear grids, etc. Grids that cannot be smoothly mapped to a
periodic grid are called irregular grids. Grids with varying local
topology are called unstructured (e.g., gridswith the number of edges
changing from node to node with no pattern).

The regular and irregular grids considered in this paper are derived
from an underlying (possibly mapped) Cartesian grid with mesh
sizes hx and hy and the aspect ratio A� hx=hy; both mesh sizes of
the underlying grid are assumed to be small, hy � 1 and hx � 1.
Irregularities are introduced locally and do not affect grid topology
and metrics outside of a few neighboring cells. A local grid
perturbation is called random if it is independent of local pertur-
bations introduced beyond some immediate neighborhood. For
computational grids generated for the reported studies, grid irregu-
larities are introduced in two ways (both local and random): 1) the
quadrilateral cells of the underlying grid are randomly split (or not
split) into triangles and 2) the grid nodes are perturbed from their
original positions by random shifts, taken as fractions of the local
mesh size.

Four basic grid types are considered:
1) Type I consists of regular quadrilateral (i.e., mapped Cartesian)

grids.
2) Type II consists of regular structured triangular grids derived

from the regular quadrilateral grids by the same diagonal splitting of
each quadrilateral.

3) Type III consists of random triangular grids, in which regular
quadrilaterals are split by randomly chosen diagonals, each diagonal
orientation occurring with a probability of half.

4) Type IV consists of random mixed-element grids, in which
regular quadrilaterals are randomly split or not split by randomly
chosen diagonals, the probabilities of splitting and of choosing a
particular diagonal are half.

Grids of types III–IVare irregular and unstructured because there
is no periodic connectivity pattern. Nodes of any basic-type grid can
be perturbed from their initial positions by random shifts, thus
leading to four additional perturbed grid types that are designated by
subscriptp as Ip–IVp. All perturbed grids are irregular, because there
is no periodic cell distribution. The representative grids are shown in
Fig. 1.

Our main interest is the accuracy and complexity of FVD schemes
on general irregular grids with a minimum set of constraints. In
particular, grid smoothness is not required, neither on individual
grids nor in the limit of grid refinement. The only major requirement
for a sequence of refined grids is to satisfy the consistent refinement
property. This property requires the maximum distance across the
grid cells to decrease consistently with the increase of the total
number of grid points,N. In particular, themaximumdistance should
tend to zero as N�1=2 in 2-D computations. For 3-D unstructured
grids, the consistent refinement property is studied in [1]. On 2-D
grids, the effective mesh size he is computed as the L1 norm of the
square root of the control volumes.

The locations of discrete solutions are called data points. For
consistency with the 3-D terminology, the 2-D cell boundaries are
called faces, and the term edge refers to a line (possibly virtual)
connecting the neighboring data points. Each face is characterized by
two vectors: 1) the edge vector, which connects the data points of the
cells sharing the face and 2) the directed-area vector, which is normal
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to the face with magnitude equal to the face area. For each cell/face
combination, the vectors are directed outward.

For grids of types Ip–IVp, the random node perturbation in each
dimension is defined as 1

4
�h, where � 2 ��1; 1� is a random number,

and h is the local mesh size along the given dimension. With these
perturbations, triangular cells in the rectangular geometry can
approach zero volume. The random perturbations are introduced
independently on all grids, implying that on grids of types Ip–IVp,
the ratios of neighboring cell volumes and face areas are random and
do not approach unity in the limit of grid refinement.

III. Finite-Volume Discretization Schemes

The considered model problem is Poisson’s equation,

�U� f (1)

subject to Dirichlet boundary conditions, where function f is a
forcing function. The 2-D primal meshes generated for this study are
composed of triangular and quadrilateral cells. The FVD schemes are
derived from the integral conservation law,I

@�

rU � n̂ ds�
Z
�

f d� (2)

where rU is the solution gradient, � is a control volume with
boundary @�, and n̂ is the outward unit normal vector. The general
FVD approach requires partitioning the domain into a set of
nonoverlapping control volumes and numerically implementing
Eq. (2) over each control volume.

CC discretizations assume solutions are defined at the centers of
the primal-grid cells, with the primal cells serving as the control
volumes. The cell center is typically defined as the average of the
vortices defining the cell (i.e., not necessarily a centroid). NC
discretizations assume solutions are defined at the primal-mesh
nodes. For NC schemes, control volumes are constructed around the
mesh nodes by the median-dual partition: the centers of primal cells
are connected with the midpoints of the surrounding faces. These
nonoverlapping control volumes cover the entire computational
domain and compose amesh that is dual to the primalmesh. Both CC
and NC control-volume partitions are illustrated in Fig. 2.

A. Cell-Centered Finite-Volume Discretization Schemes

In CC discretizations, the conservation law in Eq. (2) is enforced
on control volumes that are primary cells. The flux at a face is
computed as the inner product of the solution gradient at the face and
the directed-area vector. The at-face solution gradient is typically
reconstructed from the solution values at the neighboring cells and
augmented with the edge-directional gradient. Augmentation is used
to decrease the scheme susceptibility to odd–even decoupling [2,3].
Two possible augmentation strategies, edge normal and face tangent,
are discussed in [2,4]. In this paper, the face-tangent augmentation
strategy is implemented for CC schemes. The schematic of the face-
tangent gradient augmentation is illustrated in Fig. 3.

With reference to Fig. 2, the gradient, rrU04 (at the face-linking
nodes 0 and 4) is computed as

rrU04 �
1

n̂ � ê @
eUn̂� @fU

�
f̂ � f̂ � ê

n̂ � ê n̂
�

(3)

Here,

ê� �rB � rA	=jrB � rAj (4)

a) Type I: regular quadrilateral
grid

b) Type II: regular structured
triangular grid

c) Type III: random triangular
grid

d) Type IV: random mixed
grid

e) Type Ip: perturbed quadrilateral
grid

f) Type IIp: perturbed structured
triangular grid

g) Type IIIp: perturbed random
triangular grid

h) Type IVp: perturbed
random mixed grid

Fig. 1 Grids: a) and b) typical regular, and c)–h) irregular.
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Fig. 2 Control-volume partitions for FVDs. Numbers 0–12 and letters
A–L denote grid nodes and primal cell centers, respectively. The control

volume for aNCdiscretization around grid node 0 is shaded. The control

volume for a CC discretization around the cell center A is hashed.
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is the unit vector alignedwith thevirtual edge �A; B�, rA and rB are the
cell-center coordinate vectors, n̂ is the unit vector normal to the
control-volume face �0; 4� directed outward from cell center A,

f̂� �r0 � r4	=jr0 � r4j (5)

is a unit vector normal to n̂,

@eU�UB � UAjrB � rAj
(6)

is the edge-directional derivative, and @fU is the solution derivative
computed along the face �0; 4�.

The face-tangent augmentation enforces that rrU04 recovers:
1) the edge-directional derivative,

rrU04 � ê� @eU (7)

and 2) the face-tangent derivative,

rrU04 � f̂� @fU (8)

The CC FVD schemes considered in this paper differ only in
computing @fU.

1. Node-Averaging Face Gradient

In the CC–NA schemes, the solution derivative along the face,
@fU, is computed as the divided difference between the solution
values reconstructed at the nodes from the surrounding cell centers.
With respect to Fig. 2, the solution at node 0 is reconstructed by
averaging solutions defined at the cell centers A, B, and C. The
solution reconstruction proposed in [5,6] and used in [7] is an
averaging procedure that is based on a constrained optimization to
satisfy some Laplacian properties. The scheme is second-order
accurate and stable when the coefficients of the introduced pseudo-
Laplacian operator are close to one. It has been shown in [8] that this
averaging procedure is equivalent to an unweighted least-squares
linear fit. For the face �0; 4�,

@fU� Û0 � Û4

jr0 � r4j
(9)

where Ûi and ri are the averaged solution and the coordinate vector of
the node i.

On highly stretched and deformed grids, some coefficients of the
pseudo-Laplacian may become negative or larger than two, which
has a detrimental effect on stability and robustness [9,10]. Holmes
and Connell [5] proposed to enforce stability by clipping the
coefficients between 0 and 2. The CC–NA schemes with clipping
represent a current standard in practical CFD for applications
involving CC finite-volume formulations [11]. As shown further in
the paper, clipping seriously degrades the solution accuracy.

2. Least-Squares Scheme Face Gradient

An alternative CC scheme relies on a face-based least-squares

method. First, an auxiliary face gradientdrU is reconstructedwithin a
face using a least-squares procedure. Then, the derivative along the
face is computed as

@fU�drU � f̂ (10)

The two approaches to determine stencils for the least-squares
linear fit at a face are described as follows. The CC–NN six-point
stencil consists of the two prime cells sharing the face and their face
neighbors, which share one of the face nodes. In Fig. 4a, the CC–NN
stencil for the highlighted face is denoted by circles.

The CC–CS is important for discretizations on high-aspect-ratio
grids of types II and III to correctly represent the direction of the
strong coupling. It is constructed by choosing between two stencils
for face least-squares gradient reconstruction: a six-point stencil and
a minimal (typically four-point) stencil. In general, the minimal
stencil takes advantage of the local topology associated with grids
generated with advancing layer methods, and it is intended for long
faces of high-aspect-ratio triangular grids.

Gradient
Projection

Edge-Gradient

Constructed
Gradient

Face-Normal

A

B

Face-Tangent

Fig. 3 Face-tangent gradient augmentation; gradient projection is

@f Uf̂.
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scheme 
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CC-NN scheme

d) Laplacian stencil for the shaded cell with
CC-CS scheme

Fig. 4 Stencils on high-aspect-ratio grids of type III. Figures are vertically expanded for better visualization.
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Specifically, at each face, the CC–CS method first attempts to
construct a six-point stencil by combining two prime cells and four
auxiliary cells; each auxiliary cell is associatedwith a prime cell and a
face node. The method chooses the auxiliary cell that 1) shares the
face node, 2) is located on the opposite side of the face from the
associated prime cell center, 3) is not already in the stencil, and 4) has
the shortest distance to the center of the associated prime cell. The
six-point stencil for the highlighted diagonal face is denoted by the
union of empty and filled circles in Fig. 4b. Note that cell F in the
CC–NNstencil (Fig. 4a) is replaced by cellG in the six-point CC–CS
stencil. For the prime cell A on high-aspect-ratio grids, the nearest
cell that shares node 1 and is on the opposite side of the face �1; 2� is
cellG, not cellF. In the process of construction, the closest auxiliary
cell associatedwith each primal cell is identified. Theminimal stencil
is defined by the union of the prime cells and their closest associated
auxiliary cells. In Fig. 4b, cell G is the closest auxiliary cell to the
primal cell A, cell C is the closest auxiliary cell to the primal cell B,
and the minimal stencil is shown as empty circles. Note that, in some
local geometries, a prime cell may have no auxiliary cells. In such
cases, the minimal stencil consists of less than four points.

The CC–CS method selects the minimal stencil if either the six-
point stencil cannot be formed following the rules 1–4 (which may
happen next to the boundaries or in curved geometries) or the
minimal stencil represents an ideal four-point pairwise construction.
The four-point pairwise construction is considered ideal if one can
form two pairs, with each pair satisfying the three following
geometrical conditions. The data points within the pair 1) are on
opposite sides of the face, 2) are closer than a predefined threshold
(typically taken as a fraction of the larger local mesh size), and
3) have a skew angle (the angle between the vector connecting the
points and the face directed-area vector) smaller than a predefined
threshold. For computations on high-aspect-ratio grids, the distance
threshold has been chosen as 3

16
hx, where hx is the larger mesh size of

the background Cartesian grid, and the skew threshold has been
chosen as sin�1�0:1	. The four-point stencil in Fig. 4b is considered
ideal.

Figures 4c and 4d compare CC–NN and CC–CS stencils
corresponding to the FVD of Poisson’s equation on the shaded cell.
The CC–CS scheme uses minimal stencils for diagonal and
horizontal faces and a six-point stencil for vertical faces. The CC–CS
stencil ismore compact than theCC–NNstencil and provides a three-
point vertical structure centered at the shaded cell center that better
reflects the grid anisotropy direction.

Remark: It is known that on high-aspect-ratio curved grids,
unweighted least-squaresmethods have difficulties with reconstruct-
ing accurate gradients within a cell [12–14]. Inverse distance
weighting has been shown to improve gradient accuracy. For face-
centered least-squares reconstruction, the usual weightings (with
distances measured from the face center) do not improve gradient
accuracy, because all points involved in least-squares stencils are
typically at comparable distances from the face center. A modified
weighting, which is based on minimal distances from the two cell
centers across the face, with an extended stencil (the stencil that is
used inCC–NAscheme) improves gradient accuracy on high-aspect-
ratio curved grids derived by an advanced-layer method. The
weighting effectively reduces the extended stencil to the minimal
stencil of the CC–CS scheme. However, the method led to unstable
formulations on general irregular grids and was not pursued further.

B. Node-Centered Finite-Volume Discretization Scheme

The second-order accurate NC FVD scheme illustrated by Fig. 5
represents a standard CFD approach to NC viscous discretizations.
The scheme approximates the integral flux through the dual faces
adjacent to the edge �0; 4� asZ

A�B

rU � n̂ ds
rrUA� � nA� �rrU�B � n�B (11)

where� is themedian of the edge �0; 4�. The gradient is reconstructed
separately at each dual face as follows.

For the triangular element contribution, the gradient is determined
from a Green–Gauss evaluation at the primal-grid element:

rrU�B �rU014 (12)

The gradient overbar denotes a gradient evaluated by the Green–
Gauss formula on the primal cell identified by the point subscripts.
With fully triangular elements, the formulation is equivalent to a
Galerkin finite-element scheme with a linear basis function [9,15].
Analysis in Appendix A shows that on unperturbed triangular grids
of types II and III in rectangular geometries, the formulation recovers
the five-point Laplacian stencil of the type I grids, independent of
aspect ratio.

For the quadrilateral element contribution, the gradient rrUA� is
constructed as the Green–Gauss gradient augmented with the edge
derivative,

rrUA� �rU0234 � �@eU � rU0234 � e04�e04 (13)

where

@eU�U4 � U0

jr4 � r0j
(14)

is the edge derivative, Ui is the solution at node i, and

e 04 �
r4 � r0
jr4 � r0j

(15)

is the unit vector aligned with the edge �0; 4�. The edge-normal
augmentation illustrated in Fig. 6 is used to enforce that the
constructed gradient recovers 1) the edge-directional derivative,

rrUA� � e04 � @eU (16)

and 2) theGreen–Gauss gradient projected on the direction normal to
e04:

rrUA� � e?04 �rU0234 � e?04 (17)

0

4
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1
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n BA µ

B
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µ
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Fig. 5 Illustration of gradient reconstruction for viscous terms on

mixed grids with median-dual partition.
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Fig. 6 Edge-normal gradient augmentation; gradient projection is

rU � �rU � e�e.
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Note that, for grids with dual faces perpendicular to the edges, the
edge gradient @eU is the only contributor. It has been shown [1,16]
that the scheme possesses second-order accuracy for viscous fluxes
on general isotropic mixed-element grids.

IV. Complexity of Discretization Stencils

The size of the stencil for theviscous discretization is examined for
2-D and 3-D CC and NC FVD schemes. Estimates are made for
Cartesian meshes split into triangular and tetrahedral elements,
neglecting any boundary effects.

In 2-D, two splittings of theCartesian grid are considered. Thefirst
splits each quadrilateral cell with a diagonal oriented in the same
direction. The second splits the cells with diagonals of face-adjacent
quadrilaterals oriented in the opposite direction. The second splitting
is slightlymore analogous to the 3-D splitting. In 3-D, half of the grid
nodes have 18 incident edges (32 incident tetrahedra) and half have
six incident edges (eight incident tetrahedra). Each of the tetrahedra
interior to an originally hexahedral cell is defined by four nodes, each
with 18 incident edges. Each of the four surrounding tetrahedra
within an originally hexahedral cell is defined by three nodes with 18
incident edges and one node with six incident edges.

Table 1 shows stencil-size estimates for triangular/tetrahedral
grids and a numerical calculation on an actual 3-D turbulent viscous
grid that includes boundary effects. There is a slight difference in the
2-D estimates from the two splittings (entries separated by slashes in
the table), depending on the diagonalization pattern. The CC–NA
stencil is the largest. The CC–NN stencil is only slightly larger than
the stencil of the NC discretization, in both estimation and
computation. The complexity of the CC–CS stencil is even smaller.

V. Analysis Methods

The accuracy of FVD schemes is analyzed for known exact or
manufactured solutions. The forcing function and boundary values
are found by substituting this solution into the Poisson equation with
Dirichlet boundary conditions. The discrete forcing function is
defined at the data points.

A. Discretization Error

The main accuracymeasure is the discretization errorEd, which is
defined as the difference between the exact discrete solutionUh of the
discretized Eq. (2) and the exact continuous solution U to the
differential Eq. (1),

Ed �U � Uh (18)

where U is sampled at the data points.

B. Truncation Error

Another accuracy measure commonly used in computations is
truncation error. Truncation error Et characterizes the accuracy of
approximating the differential equation (1). For finite differences, it
is defined as the residual obtained after substituting the exact solution
U into the discretized differential equations [17]. For FVD schemes,
the traditional truncation error is usually defined from the time-
dependent standpoint [18,19]. In the steady-state limit, it is defined
(e.g., in [20]) as the residual computed after substituting U into the
normalized discrete Eq. (2),

Et �
1

V

�
�
Z
�

fh d��
I
@�

�rrU � n̂	 ds
�

(19)

where V is the measure of the control volume,

V �
Z
�

d� (20)

fh is an approximation of the forcing function f on �, and the
integrals are computed according to some quadrature formulas. Note
that convergence of truncation errors is expected to show the order
property only on regular grids. It has been long known that, on
irregular grids, the design-order discretization-error convergence can
be achieved. even when truncation errors exhibit a lower-order
convergence or, in some cases, do not converge at all [21–23].

C. Accuracy of Gradient Reconstruction

Yet another important accuracy measure is the accuracy of
gradient approximation at a control-volume face. For second-order
convergence of discretization errors, the gradient is usually required
to be approximatedwith at least first order. For each face, accuracy of
the gradient is evaluated by comparing the reconstructed gradient
rrU with the exact gradient rU computed at the face center. The
gradient reconstruction uses a discrete representation (usually
injection) of the exact solution U at data points on a given grid. The
accuracy of gradient reconstruction is measured as the relative
gradient error,

Erel �
k�k
kGk (21)

where functions � and G define at-face magnitudes of the gradient
error and the exact gradient, respectively,

�� jrrU � rUj (22)

and

G� jrUj

and k � k is a norm of interest computed over the entire computational
domain. For the NC scheme, the exact and reconstructed gradients
are evaluated at the centers of primal cells.

VI. Isotropic Irregular Grids

A. Grid Refinement

A sequence of consistently refined grids of type IIIp is generated
on the unit square �0; 1� � �0; 1�. Irregularities are introduced at each
grid independently. The ratio of areas of neighboring faces can be as

large as 3
���
2
p

. The ratio of the neighboring volumes can be arbitrarily
high, because a control volume can be arbitrarily small. Isotropic
grids randomly generated for this study have 0.01% of cell volumes
smaller than 1

10
1
N
, where N is the total number of grids nodes.

B. Gradient Reconstruction Accuracy

The accuracy of gradient reconstruction for isotropic irregular
grids is first order for all methods [24], which is sufficient for second-
order discretization accuracy. As an example, the gradient
reconstruction tests are performed for the manufactured solution
U� sin�	x� 2	y	. Figure 7 shows convergence of the L1 norms
of relative gradient errors computed on a sequence of refined grids of
type IIIp. All methods provide first-order gradient approximations
and very similar relative errors. Note that, because the gradients of
the NC scheme are evaluated at the primal cell centers, the effective
mesh size of gradient reconstruction is the same for all schemes.

C. Convergence of Truncation and Discretization Error

The numerical tests evaluating convergence of truncation and
discretization errors are performed with Dirichlet boundary condi-
tions specified from the manufactured solutionU� sin�	x� 2	y	.

Table 1 Average size of the viscous stencil on

triangular (2-D) and tetrahedral (3-D) grids.

The two numbers for CC 2-D schemes correspond
to different diagonalization patterns

NC CC–NA CC–NN

2-D estimate 7 13=16 10=9
3-D estimate 13 79 15
3-D numerical 14 69 15
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ForCC formulations, the solution is specified on all cells linked to the
boundary. Figure 8 shows convergence of theL1 norms of truncation
and discretization errors for the NC and two CC formulations on
grids of type IIIp. As predicted in [1,16], truncation errors do not
converge on irregular grids in any norm. Discretization errors
converge with second order for all formulations considered. The
discretization errors of the CC and NC FVD schemes are almost
overplotted, indicating a similar accuracy per degree of freedom.
Note that a given multidimensional grid typically has more primal
cells than nodes. Thus, on a given grid, a CC scheme has more
degrees of freedom than a NC scheme and, consequently, is expected
to have a better accuracy.

D. Effects of Clipping

The tests reported in this section are performed for the CC–NA
schemes and demonstrate detrimental effects of clipping on accuracy
of gradient approximation and on the discretization accuracy. The
accuracy is evaluated for the manufactured solution U� sin�2	y	.
Considered irregular grids of type IIIp are derived from underlying
isotropic (unit aspect ratio) Cartesian grids covering the unit square.
Figure 9a shows an example of an isotropic random triangular grid of
type IIIp with 17

2 nodes. About 7% of the interior nodes are clipped.
It has been demonstrated in [25] that the face gradients computed

by the CC–NA scheme with clipping do not approximate the exact
gradients on grids of type IIIp. The normal and tangential compo-
nents of the computed gradients were evaluated within interior faces

and compared with the exact gradient components at the face center.
The maximum norms of the deviations between the computed and
the exact gradient components did not converge in grid refinement.
TheCC–NA schemewithout clipping provided a first-order-accurate
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gradient approximation. Figure 9b exhibits convergence of the L1

norms of discretization errors. Although the CC–NAschemewithout
clipping demonstrates second-order convergence on all grids,
convergence of the CC–NA schemewith clipping degrades to zeroth
order on finer grids. Although not shown, the L1 norms of the
discretization errors converge with the same orders as the
corresponding L1 norms.

VII. Anisotropic Grids

This section considers FVD schemes on irregular stretched grids
generated on rectangular domains. Figure 10 shows an example grid
with the maximal aspect ratioA� 1000. A sequence of consistently
refined stretched grids is generated on the rectangle �x; y	 2
�0; 1� � �0; 0:5� in the following three steps.

1) A background regular rectangular grid with N � �Nx � 1	 �
�Ny � 1	 nodes and the horizontal mesh spacing hx � 1=Nx is
stretched toward the horizontal line y� 0:25. The y coordinates of
the horizontal grid lines in the top half of the domain are defined as

y�Ny=1	�1 � 0:25; yj � yj�1 � ĥy�j���Ny=2	�1	�;

j�
Ny
2
� 2; . . . ; Ny; Ny � 1 (23)

Here, ĥy � hx=A is the minimal mesh spacing between the vertical
lines,A� 1000 is a fixed maximal aspect ratio, and � is a stretching
factor that is found from the condition yNy�1 � 1. The stretching in

the bottom half of the domain is defined analogously.
2) Irregularities are introduced by random shifts of interior nodes

in the vertical and horizontal directions. The vertical shift is defined

as �yj � 3
16
�min�hj�1y ; hjy	, where � is a random number between

�1 and 1, and hj�1y and hjy are vertical mesh spacings on the

background stretched mesh around the grid node. The horizontal
shift is introduced analogously, �xi � 3

16
�hx. With these random

node perturbations, all perturbed quadrilateral cells are convex.
3. Each perturbed quadrilateral is randomly triangulated with one

of the two diagonal choices; each choice occurs with a probability of
one half.

A recent study [24] assessed the accuracy of gradient approxi-
mation on various irregular grids with a high aspect ratio of A�
hy=hx � 1. The study indicates that, for rectangular geometries and
functions predominantly varying in the direction of small mesh
spacing (y direction), gradient reconstruction is accurate. For
manufactured solutions significantly varying in the direction of
larger mesh spacing (x direction), the face-gradient reconstruction
may produce extremely large O�Ahx	 relative errors affecting the
accuracy of the y-directional gradient component. Figures 11a and
11b confirm this analysis and show examples of gradient
approximations that exhibit first-order accuracy and large relative
errors on high-aspect-ratio grids of type III. On these grids, the NC
scheme and CC–CS scheme produce accurate gradients for all
solutions, independent of grid aspect ratio. Accuracy of gradients
reconstructed with CC–NN and CC–NA schemes is directly
proportional toAhx and typically poor for solutions varying in the x
direction of larger mesh spacing, unless the grids are extremely fine.
For solutions varying predominantly in the y direction of smaller
mesh spacing, all schemes produce accurate gradients.

A summary of the previous results [24] for grids of all types
(supplemented by the results for the CC–CS scheme) is presented in
Table 2. All considered gradient reconstruction methods are accurate
on regular quadrilateral grids of type I, but they may generate large
relative errors on irregular grids of types Ip–IVp with perturbed
nodes. The CC–NA and CC–NN methods may also have large
relative errors on unperturbed grids of types II–IV. The CC–CS
gradients are accurate for unperturbed triangular grids; the accuracy
of CC–CS gradients is similar to the accuracy of the CC–NN
gradients on mixed-element grids of type IV. The NC method using
the Green–Gauss approach always provides accurate gradients on
unperturbed grids.

However, a poor gradient reconstruction accuracy does not
necessarily imply a large discretization error.Mavriplis [12] reported
(second-order) accurate NC solutions, even on grids with large
gradient reconstruction errors. Here, similar results are observed for
CC and NC formulations.

Sequences of consistently refined stretched grids with amaximum
aspect ratio ofA� 1000, including 9 � 65, 17 � 129, 33 � 257, and
65 � 513 nodes have been considered. The corresponding stretching
ratios are �
 1:207, 1.098, 1.048, and 1.025. The grids of types III
and IIIp are representative for general perturbed and unperturbed
grids, respectively. Convergence of the L1 norms of discretization
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Fig. 10 Stretched grid of type IIIp with 9 � 65 nodes.
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errors for themanufactured solutionU� cos�	x� 2	y	 is shown in
Fig. 12. The highly stretched grids are not well suited with the
manufactured solution, but such a mismatch is chosen intentionally
to demonstrate convergence in the worst-case scenario.

All tests have been performed stochastically [i.e., multiple grids
(ten)] with different irregularities; patterns have been independently
generated on each scale (same number of nodes). The plot symbols
indicate the mean errors, and the bars indicate the maximum and
minimum errors observed on each scale. The effective mesh size is
practically the same for all CC schemes at a given scale, but for
visualization purposes, plots of the CC–NA andCC–CS schemes are
shifted to the right and the left, respectively, of the CC–NN scheme.

All discretization errors are relatively small and converge with
second order. The errors on grids of type III are about two orders of
magnitude smaller than the errors on the grids of type IIIp. The NC
scheme is remarkably insensitive to grid irregularities on all grids.
Largevariations of discretization errors are observed for CC schemes
on coarse grids of type IIIp. The largest variation is with the CC–NN
scheme. Error variations for all schemes are decreasing on finer
scales. On grids of type III, the error variations are small on all scales.
The CC schemes tend to show smaller errors on coarser grids, but
they require finer grids to establish the second-order convergence.
Although not shown, on grids of type IIIp, the level of errors for the

solution U� cos�2	y	 varying only in the y direction is more than
two orders of magnitude smaller than the level of errors for the
solution U� cos�	x� 2	y	 that has a significant variation in the x
direction.

VIII. Grids with Curvature and High-Aspect Ratio

This section discusses the accuracy of FVD schemes on grids with
large deformations induced by a combination of curvature and a high
aspect ratio. Grids of types I–IV are considered for the cylindrical
geometry. Random node perturbation is not applied, because even
small perturbations in the circumferential direction may lead to
nonphysical control volumes. Representative stretched grids of
types III and IV are shown in Fig. 13. The grid nodes are generated
from a cylindrical mapping, where �r; �	 denotes polar coordinates
with spacings of hr and h�, respectively. The innermost radius is
r� R. The grid aspect ratio is defined as the ratio ofmesh sizes in the
circumferential and the radial directions, A� Rh�=hr. The mesh
deformation is characterized by the parameter �:

�� R�1 � cos�h�	�
hr


 Rh
2
�

2hr
�A

h�
2

(24)

The following assumptions are made about the range of
parameters:R
 1,A� 1, and�hr � 1, which implies that bothhr
and h� are small. For a given value ofA, the parameter � may vary:
�� 1 corresponds to meshes with large curvature-induced
deformation, and �� 1 indicates meshes that are locally (almost)
Cartesian. In a mesh refinement that keeps A fixed, ��O�Ah�	
asymptotes to zero. This property implies that, on fine enough grids
with a fixed curvature and an aspect ratio, the discretization-error
convergence is expected to be the same as on similar grids generated
on rectangular domains with no curvature.

Table 2 Relative error of gradient reconstruction on

anisotropic grids in rectangular domains

Grids I II III IV Ip–IVp

NC O�h2x	 O�hx	 O�hx	 O�hx	 O�Ahx	
CC–NA O�h2x	 O�Ah2x	 O�Ahx	 O�Ahx	 O�Ahx	
CC–NN O�h2x	 O�Ah2x	 O�Ahx	 O�Ahx	 O�Ahx	
CC–CS O�h2x	 O�h2x	 O�hx	 O�Ahx	 O�Ahx	
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Fig. 12 Convergence of discretization errors for solution U � cos��x� 2�y� on stretched grids with a maximum aspect ratio ofA � 1000.
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The focus in this section is on convergence of discretization errors
on high-� grids with large curvature-induced deformations,
following a previous study [24] that focused on gradient accuracy.
The considered manufactured solutions predominantly vary in the
radial direction of small mesh spacing.

A. Accuracy of Gradient Approximation

Gradient approximation accuracy on deformed grids with high �
has been studied in the literature, mostly in regard to NC
discretizations of inviscid terms [12–14]. The observations and
analysis indicated that the unweighted least-squares methods poorly
approximate gradients at control-volume centers. The main reasons
for poor gradient approximation are 1) the stencil deformation and
2) heavy reliance of the unweighted least-squares method on
solutions at distant points. Weighted least-squares methods have
been proposed to reduce the effect of distant points and, thus, to
improve gradient accuracy.

The situation is different for the viscous terms, for which the
gradient reconstruction is required at the control-volume face, not at
the center. The gradients of the NC scheme and the gradients of the
CC–CS scheme on triangular grids use the minimal stencil and are
expected to be accurate on unperturbed grids, independent of aspect
ratio. For other CC schemes, the at-face gradient reconstruction is
more difficult. The more extended stencils of least-squares methods
involved either in CC–NA or in CC–NN gradient reconstruction are
significantly deformed, and reconstructions generate large errors.
Weighted least-squares methods are not effective, because all
distances from stencil points to the face center are similar.

To improve the accuracy of gradient reconstruction, a general
approximate mapping (AM)method is proposed. The AMmethod is
motivated by the observation that, in an exactly mapped coordinate
system (e.g., in polar coordinates for grids generated around a circle),
gradient approximation for a radial function is as good as the gradient
approximation in domains with no curvature. The AM method
described next is a second-order approximation to the exactmapping.

The AMmethod constructs a local mapping based on the distance
function that supplies the distance from a field point to designated
boundaries and is readily available in practical codes. In this paper,
we use the exact distance function defined at the cell centers. Amore
practical alternative (not used here) is to define the distance function
at the grid nodes. The least-squares minimization is applied in a local
coordinate system ��; �	, where � is the coordinate normal to the
boundary, and � is the coordinate parallel to the boundary. Figure 14
illustrates construction of the local coordinates. The vector normal to
the boundary is constructed at the face center � as an average of two
normal vectors defined at the cell centers across the face. The
corresponding unit vector n̂� is defined as

n̂ � �
rA � r
A � rB � r
B
jrA � r
A � rB � r
Bj

(25)

where rA and rB are the positions of the control-volume centers, and
r
A and r
B are the corresponding positions of the closest boundary
points. The distance to the boundary at the face center � is
approximated as

s� �
jrA � r
Aj � jrB � r
Bj

2
(26)

The unit vector normal to n̂� is denoted as 
̂�. For constructing the
least-squares minimization at a control-volume face with the center
r�, each stencil pointP ismapped onto the local coordinates ��P; �P	
by

�P � �rP � r�	 � 
̂� (27)

�P � sP � s� (28)

where sP � jrP � r
Pj.
Thegradient approximation accuracy for a radial function on high-

� grids of types I–IV from the previous study [24], supplemented
with the CC–CS and CC–NA–AM results, is summarized in Table 3.
Convergence of the maximum gradient errors over all faces is
tabulated. Note that large O�Ah�	 relative errors for the CC–NA
scheme occur on high-� grids of type III at only the radially oriented
faces in the gradient component tangential to the face; the errors at
other faces and in the gradient component normal to the radial face
are small.

B. Discretization-Error Convergence

Discretization errors of CC schemes are compared with the errors
of the NC scheme on refined stretched high-� grids of types III and
IV. The tests are performed for the manufactured solution
U� sin�5	r	. The computational grids (see Fig. 13) are derived
from background regular cylindrical grids with a radial extent of
1 � r � 1:2 and an angular extent of 20 deg. The background grids
have four times more nodes in the radial direction than in the
circumferential direction. The grid-refinement study is performed on
grids stretched in the radial direction, with a fixed maximal aspect
ratio of A
 1000. The maximal value of parameter � changes
approximately from 24 to 3. The stretching ratio is changing as
�� 1:25, 1.11, 1.06, and 1.03.

Convergence of the L1 norms of the discretization errors on grids
of type III is shown in Fig. 15a. All tests have been performed
stochastically. The plot symbols again indicate the mean errors, and
bars indicate the maximum and minimum errors observed on each
scale. As expected, error variations observed on grids of the same
scale due to stochastic grid irregularities are small for all schemes and
decreasing for smaller scales (larger number of degrees of freedom).
The errors of the NC, CC–NA,CC–CS, CC–NN–AM, and CC–NA–
AMsolutions convergewith second order and are almost overplotted
on fine grids, indicating the same accuracy per degree of freedom.
The errors of the CC–NN scheme are significantly higher and
converge with first order.

Convergence of the L1 norms of the discretization errors on grids
of type IV, shown in Fig. 15b, is similar to the results in Fig. 15a. The
effective mesh sizes of CC and NC formulations are much closer on
mixed grids than on triangular grids. The CC–CS scheme is omitted
because, on mixed-element grids, its current version is similar to the
CC–NN scheme. Note also that the CC–NA scheme may lose
stability on high-� mixed-element grids. On these grids, there are
topologies for which the node solution is averaged from four
neighboring cells. The four cell centers involved in such averaging
may be located on a straight line, thus leading to degeneration. In
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rBrA

η
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Fig. 14 Sketch of coordinate system used in AM method.

Table 3 High-� grids: relative errors of gradient

reconstruction

I II III IV

NC O�h2�	 O�h�	 O�h�	 O�h�	
CC–NN O�h2�	 O�1	 O�1	 O�1	
CC–NN–AM O�h2�	 O�h2�	 O�h�	 O�h�	
CC–CS O�h2�	 O�h2�	 O�h2�	 O�1	
CC–NA O�h2�	 O�h2�	 O�Ah�	 O�Ah�	
CC–NA–AM O�h2�	 O�h2�	 O�h�	 O�h�	
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these (rare) instances, large negative contributions appear on the
main diagonals of the full linearization matrix. The scheme may still
be solved and even provide a reasonable accuracy. The AM version
of the CC–NA scheme, CC–NA–AM, is always stable. Overall,
discretization errors of the NC scheme and the best CC schemes
(CC–CS, CC–NN–AM, and CC–NA–AM) converge with second
order, are insensitive to grid irregularities, and are comparable at an
equivalent number of degrees of freedom.

IX. Conclusions

Complexity and accuracy of NC and CC FVDs have been
compared for Poisson’s equation as a model of viscous fluxes.
Considering complexity, the NC scheme has the lowest complexity
(i.e., its stencil involves the least number of degrees of freedom). The
CC schemes using least-squares face-gradient reconstruction, the
CC–NN and the CC–CS schemes, have complexity comparablewith
that of the NC scheme. Complexity of the CC–NA scheme is the
highest.

The accuracy comparisons have beenmade for two classes of tests.
The first class is representative of adaptive-grid simulations and
involves irregular grids in rectangular geometries. The second class is
representative of high-Reynolds number turbulent flow simulations
over a curved body and involves highly stretched grids, typical of
those generated by the method of advancing layers. All tests have
been performed for smooth manufactured solutions on consistently
refined grids. Grid perturbations and stretching have been
intentionally introduced independently of solution variation to bring
out the worst possible behavior.

For the tests of the first class, only the CC–NA scheme with
clipping can fail to approximate gradients and/or to converge to the
exact solution. However, note that the clipping is introduced mainly
for stability of the inviscid solution and can be avoided for theviscous
terms. All other schemes demonstrate similar qualities:

1) The discretization errors converge with second order and are
quantitatively similar on grids of the same type with equivalent
degrees of freedom. On high-aspect-ratio randomly perturbed grids,
discretization errors for all schemes are orders of magnitude higher
than corresponding errors on unperturbed grids.

2) Gradient reconstruction may produce O�Ahx	 large relative
errors on grids of types Ip–IVp, whereA is the grid aspect ratio and
hx is the larger mesh spacing.

3) Truncation errors do not converge, as expected.
For the tests of the second class, the range of grid parameters has

been chosen to enforce significant curvature-induced grid
deformations, characterized by parameter �. These high-� tests
proved to be more discriminating:

1) The discretization errors are small and converge with second
order for the NC scheme, for approximate mapping schemes (CC–
NN–AM and CC–NA–AM), for the CC–NA scheme, and for the

CC–CS scheme on triangular grids. The CC–NN scheme without
approximate mapping shows first-order convergence and the highest
level of discretization errors.

2) Accurate gradient reconstruction is provided by the NC scheme
and the CC–NN–AM and CC–NA–AM schemes on all grids and by
the CC–CS scheme on triangular grids. On high-� grids of types II–
IV, the CC–NN scheme without approximate mapping generates
O�1	 errors in gradient reconstruction. The CC–NA scheme may
produce large relative gradient errors proportional to the product of
the grid aspect ratio and the larger mesh spacing.

3) Without AM, the CC–NA scheme may degenerate on mixed
grids.

The major conclusion is that the accuracy and complexity of the
NC and the best CC schemes on irregular grids are comparable at
equivalent number of degrees of freedom.
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Appendix A: Node-Centered Discretization on Grids
of Types II and III in Rectangular Geometries

In this section, we show that theNCdiscretization of the Laplacian
is equivalent to the standard finite-difference formula for arbitrary
aspect-ratio grids of types II and III in rectangular geometry.
Consider a set fTjg of triangles/tetrahedra that share a node j. For the
NC scheme, the Green–Gauss gradient within each cell is given by

rU T � 1

D�T

X
i2fiT g

Ui �ni (A1)

where D is the number of spatial dimensions, D� 2 for triangles,
D� 3 for tetrahedra,�T is the volume of cell T, fiTg is a set of nodes
of the cell T, and �ni is the inward-directed area vector of the face
opposite to the node i. Then, the NC discretization (or equivalently,
the standard Galerkin discretization) of the Laplacian at j is defined
asZ

�

�U d��
Z
@�

rU � n��
X
T2fTjg

1

D2�T

X
i2fiT g

Ui� �ni � �nTj 	 (A2)

where � is the dual control volume around j and �nTj is the inward-

directed area vector opposite to node j in cell T. The right-hand side
of Eq. (A2) can be separated into two terms:
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Fig. 15 Convergence of the L1 norms of the discretization errors on high-� grids.
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Z
�

�U d��� 1

D2

X
T2fTjg

�
�nTj � �nTj
�T

�
Uj

� 1

D2

X
T2fTjg

X
i2fiT g;i≠j

�
�ni � �nTj
�T

�
Ui (A3)

The first term contains contributions from the node valueUj, and the
second term contains contributions from the neighbors.

For general 2-D triangular grids (Fig. A1),Z
�

�U d��� 1

4

X
T2fTjg

�
�nTj � �nTj
�T

�
Uj

� 1

4

X
k2fkjg

�
�nLk � �nLj
�L

�
�nRk � �nRj
�R

�
Uk (A4)

where fkjg is a set of neighbors of j, and the normals are inward
normals, as defined in Fig. A1. This can be written also in terms of
angles between edges,Z

�

�U d��� 1

4

X
T2fTjg

�
�nTj � �nTj
�T

�
Uj �

1

2

X
k2fkjg
�cot �L � cot �R	Uk

(A5)

which is often used to show that the discretization is positive for
triangulations with �L � �R < 	. Consider now a grid of type III,
shown in Fig. A2, which is constructed by inserting diagonals into a
Cartesian grid. For this particular diagonal splitting, node 3 does not
contribute to the discretization equation (A4), because it is not a
neighbor to node j, and nodes 1, 5, and 7 do not contribute, because
the angles �L and �R are both 90 deg; therefore, the coefficient
(cot �L � cot �R) vanishes. This is, in fact, true for any diagonal
splittings: contributions from the corner nodes 1, 3, 5, and 7 are
always zero, either because it is not in the actual stencil or because the
coefficient vanishes. Observe also that angles �L and �R for other
nodes are independent of the diagonal splitting; thus, we always have

cot �L � cot �R �
(
hy
hx

for nodes 2 and 6
hx
hy

for nodes 4 and 8
(A6)

Moreover, it is easy to show that the coefficient of U0 is also
independent of the splitting. Hence, the discretization equation (A4)
can be written, for arbitrary splittings, as

Z
�

�U d���2
�
hx
hy
�
hy
hx

�
U0 �

hy
hx
U2

� hx
hy
U4 �

hy
hx
U6 �

hx
hy
U8 (A7)

� hxhy
�
U4 � 2U0 �U8

h2x
�U6 � 2U0 �U2

h2y

�
(A8)

This is a common five-point finite-difference discretization.
Therefore, the NC scheme on grids of types II and III with the
arbitrary aspect ratio is equivalent to the common five-point
Laplacian. For stretched grids, the corner nodes still do not contribute
to the discretization. A similar property holds in 3-D, for which the
NC scheme on a tetrahedral grid derived from a (stretched) Cartesian
grid by arbitrary diagonal splitting is equivalent to a common seven-
point finite-difference discretization.
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